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"Normal" and indefinitely-growing (IG) self-avoiding walks (SAWs) are 
exactly enumerated on several deterministic fractals (the Manderbrot-Given 
curve with and without dangling bonds, and the 3-simplex). On the nth fractal 
generation, of linear size L, the average number of steps behaves asymptotically 
as ( N ) =  AL ~ + B. In contrast to SAWs on regular lattices, on these factals 
IGSAWs and "normal" SAWs have the same fractal dimension Dsaw. However, 
they have different amplitudes (A) and correction terms (B). 

KEY WORDS: Self-avoiding walks; indefinitely-growing self-avoiding walks; 
fractals; renormalization. 

1. INTRODUCTION 

Random self-avoiding walks (SAWs) are often used as a model for polymer 
chains. ~ Some recent interest has concentrated on the statistics of SAWs 
on random substrates, and in particular on dilute networks, t2'3~ Although 
it is now accepted that above the percolation threshold Pc, SAWs scale in 
the same way as in the nondilute  case, ~2~ their behavior at this threshold is 
still open to research. At p,.,  the spanning percolation cluster has fractal 
geometry. 13~ Many aspects of this geometry have been successfully imitated 
by deterministic fractal structures ~3~ on which physical problems can be 
solved analytically. In this paper we solve the statistics of SAWs on several 
such fractal models. 

There exist different types of SAWs, each having its own set of rules 
which define the weight associated with each SAW. The different types of 
walks can be basically divided into two groups: 
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1. Kinetic walks, in which the walk grows dynamically. For any time 
step there is a set probability for each possible direction (on a lattice) for 
the next step. This probability depends upon the history of this specific 
walk and can change from step to step. The total weight of the walk is the 
product of all the probabilities of the single steps, c4'5~ 

2. Stat ic  walks,  in which a weight factor (denoted by x) is associated 
with each step of the SAW. The weight of an N-step SAW is x ~', disregard- 
ing the details of its path. SAWs which are forbidden accoding to the set 
of rules of this scheme have the weight factor zero. (6 81 

In this paper we focus upon two types of static SAWs. In both cases 
we limit ourselves to a fixed starting point, at the origin of a fractal genera- 
tion, and consider SAWs which never visit any lattice site more than once. 
The first type of SAW is the indefinitely-growing SAW (IGSAW), in which 
a SAW is legitimate only if it is has the capability of continuing to grow 
forever from its present endpointJ 4"9~ The second type is the "normal" 
SAW, which includes all possible SAWs whether or not they have the 
capability of further growth. 

Previous papers tg'~~ compared IGSAWs and SAWs on the two- 
dimensional square lattice. They used numerical simulations, in the canoni- 
cal ensemble, and found the average end-to-end distance of the SAW ( R )  
in terms of the number of steps N. The results were of the form ( R ) ~  N", 
with v = l/Dsaw. They found a large difference between these two fractal 
dimensions (VsA w = 0.75, while V~CSA w = 0.567). They also suggested that the 
critical dimension for this problem was d,. = 3, and above it VSA w = V~SA w. 

The study of SAWs on regular lattices and on fractals has made much 
progress in the last two decades, using analytical and numerical methods. 
One of the methods which is most commonly used is the real-space renor- 
malization group (RSRG) for a grand canonical ensemble of SAWs. Monte 
Carlo simulations using this approach were first handled by Render and 
Reynolds, Il~) Berg and Forster, (~2~ and de Carvalho et al. ~3) An analytical 
treatment for the problem using this method was first suggested by Dhar, 16~ 
and by Rammal et al., ~71 who studied the problem of SAWs on fractals, and 
Shapiro, c8~ who studied the problem on a triangular lattice. In the RSRG 
approach the problem is handled in the grand canonical ensemble, where 
a fugacity weight factor x is associated with each step of the SAW. This 
yields a fixed point x* at which the SAW average length behaves as a 
power law ( N ) ~  L ~176 where L is the SAW end-to-end distance. 

In this paper, we use RSRG to compare the masses, namely the 
average number of monomers ( N ) ,  of the two types of SAWs on two 
different fractal structures. In order to do this, we define two kinds of 
ensembles. The first one is the grand-canonical ensemble, which contains all 
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the SAWs ("normal" or IGSAWs, depending on the problem) with a fixed 
end-to-end distance R (this ensemble is used in the case of the 3-simplex). 
The second kind is a generalization of the grand-canonical ensemble, and it 
contains all the SAWs that start at the origin of a fractai generation of 
linear size L and end at its edge or inside its bulk; therefore SAWs of 
various end-to-end distances (of order L or smaller) are included in this 
ensemble (this generalization is used for the MG curve). 

In contrast to the results obtained for the square lattice, we find that 
both IGSAWs and SAWs have the same D~aw on a given fractal. However, 
we find a difference between the amplitudes of these two kinds of SAWs; 
the average number of monomers in the SAW ( N s )  is larger than in the 
IGSAW (N] ) .  We also find correction terms to the expression for ( N )  in 
both cases, and these also depend on the type of SAW. Although our 
results were obtained only for two specific fractal structures, we have good 
reasons to believe that they are valid for all finitely ramified fractals, and 
hence also for percolation clusters at Pc- 

The outline of our paper is as follows: Section 2 presents the two frac- 
tals (the Mandelbrot-Given curve and the 3-simplex). Section 3 introduces 
the RSRG, which is used as the analytical method. In Sections 4 and 5 we 
compare IGSAWs and SAWs on the MG curve and on the 3-simplex, 
respectively; Section 6 contains a discussion of finite-size corrections. 
Section 7 contains our conclusions. 

2. T H E  F R A C T A L S  

We chose to calculate D~aw on two well-known fractal structures, 
which are basically different from each other. Two stages in their iterative 
construction are demonstrated in Fig. 1. The Mandelbrot-Given (MG) 

lal 0 B 0 B 0 r l ~ 3 r l  B 
I i r  i ~ l  I 

n=O n = l  n=2 

Fig, 1. First stages of iterative construction of fractal lattices (n is the number of genera- 
tions): (a) Mandelbrot-Given, (b) 3-simplex. b is the length rescaling factor for each fractal. 
The short bonds in the 3-simplex are of negligible length. The edges of each fractal generation 
are denoted by O and B. The distance between O and B is L = b", 
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curve cz41 (Fig. la) is known to give a good qualitative and quantitative 
description of percolation clusters at p,..13~ This is related to the fact that 
it contains blobs, nodes, links, and dangling ends, similar to our picture of 
these clusters. ~5~ For the fairness of comparison between the lengths of 
IGSAWs we made two kinds of calculations on the MG curve: we first 
chose to omit all the dangling ends (they are not accessible to the 
IGSAWs) and therefore we remain with the backbone of the MG curve; we 
then calculated the lengths of SAWs on the full MG curve (including the 
dangling ends) and found that there was only a minor difference in 
amplitudes between these two cases. The 3-simplex curve (Fig. lb) is also 
a fractal of finite ramification which has also been used to imitate percola- 
tion clusters ~6"~6~ with somewhat less quantitative success. [We note that 
the 3-simplex resembles the more familiar Sierpinski gasket (SG), t3"71 with 
the difference being that each pair of close vertices in the 3-simplex unite 
and the short bonds disappear in the SG. Therefore, a SAW on the 
3-simplex can visit each vertex pair twice, a privilege which is denied for a 
SAW on the SG.] 

3. THE A N A L Y T I C A L  M E T H O D  

We define the free energy of a SAW on a fractal structure as 
follows. I~vl Consider a fractal of the nth generation and linear size L = b" 
( b = 3  for the MG curve, b = 2  for the 3-simplex). We wish to study the 
behavior of a SAW on a deterministic environment, and therefore we 
assign an energy e for each bond. The statistical weight associated with 
each bond of the SAW is x = e x p [ - ( e - p ) / k T ] ,  where k T  is the thermal 
energy and p is the chemical potential per single bond. x is sometimes 
called a "fugacity "17) per single bond [in contrast to the usual definition of 
fugacity, x=exp(p / kT) ] .  We choose to work in the grand-canonical 
ensemble, and therefore the partition function is the sum over all legitimate 
SAWs (depending on the type of SAW) of all lengths N of the products of 
statistical weights 

Z . ( x ) -  T~ x N (3.1) 
SAWs 

where the boundary conditions for (3.1) are derived from our choice of 
what type of SAW is being averaged. Using the language of Section 1, we 
say that Z,, is a partition function for all the static SAWs, and the weight 
factor associated with an N-step SAW is x u. From the free energy 
f,, = - k T .  ln(Z,,) we can obtain the thermal average number of steps in the 
n th generation, 

df, x d Z , ,  
(N) , ,  = (3.2) 

d~ Z,, dx 
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Our aim is to perform an exact calculation of Z,, and (N) , , .  For this 
purpose we use the exact real-space renormalization group (RSRG) 
approach; knowing the value of ( N ) , , ,  we calculate the value of the 
average number of steps (N) , ,+~ in the next generation. In our studied 
fractals, the iterative procedure by which those averages are calculated 
yields exact results. Since the average number of steps scales asymptotically 
as ( N ) ~  L ~  we have 

ln ( (N) , ,  + , / ( N ) , , )  
D~,w= lim (3.3) 

. . . . .  In(b) 

This method was first used by Rammal et aL ~7~ to determine the fractal 
dimension Dsaw of a SAW connecting the two edges of a fractal generation 
(in their notation Dsa, = I/v). Dsaw depends on the basic fugacity x, and 
they found that there was only one value of the critical fugacity xc for 
which the SAW was in a critical phase, so that its number of steps scaled 
like ( N ) ~ L  ~ For x > x c  the scaling is like ( N ~ ~ L  ~ and the 
polymer is in the "compact" phase, while for x < x,. ( N ) ~  L ~ and the 
polymer is in the "extended" phase (Dmi. and Dm~ x are the fractal dimen- 
sions of the shortest and the longest SAWs on the fractal, respectively). 
Using the language of the renormalization group, we say that the polymer 
is in the critical phase when the initial fugacity is at the fixed point x = x*. 
Any initial value of the fugacity which is different from x* causes the 
expression on the right-hand side of (3.3) to approach Dr,~x or Dm~, as n 
goes to infinity (Fig. 2). 

In ref. 7, the polymer had both ends fixed at the edges of a fractal 
generation (O and B in Fig. 1). This implicitly assumed that the polymer 
is of the type of the IGSAW; all the SAWs that could not reach the edge 
of this fractal generation were excluded from the partition function (3.1). 

0saw 

Dmln 

~= I, x 

Fig. 2. Dependence  of the fractal d imension of a SAW on the fugaeity. 

822/77/3-4-3 
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Moreover,  there are many IGSAWs that are excluded from (3.1) because 
they actually end inside the bulk of a fractal generation. In the next section 
we generalize the results of ref. 7 for the two cases of IGSAWs that end 
inside the bulk of a fractal generation and of "normal"  SAWs. 

4. S A W s  ON THE M A N D E L B R O T - G I V E N  ( M G )  C U R V E  

4.1. The Fixed Point 

We define a partial partition function E,,(x) which contains all the 
terms that arise from SAWs that start at the origin (O in Fig. la)  and reach 
the other end (B in Fig. la) of the nth generation. A SAW of the (n + 1 )th 
generation can choose its way by either taking the short path (in which it 
passes through 3 nth-generations) or take the long path (5 nth-generations). 
Therefore, following the method of ref. 7, we write 

E o = x ,  E,,+, =E3,,+E~ (4.1a) 

where the partition function E,, contains all the possibilities to pass 
through the nth generation from the origin to its end. In the language of 
the renormalization group we can define E ' -E, ,+ ,  and E-E, ,  and rewrite 
(4.1a) 

E'= E3 + E 5 (4.1b) 

This recursion relation has three fixed points (where E ' =  E), i.e., E =  0, 
E*,  ~ .  At the nontrivial fixed point E* the polymer resembles itself on any 
scale (in the sense that its rescaling factor does not depend on the number  
of generations n), and this identifies its "critical" phase. We can now sub- 
stitute the initial condition Eo=x into the recursion relation (4.1b) and 
come out with an equation for the fugacity's fixed point x*, 

x* = x  .3 + x  .5 (4.2) 

whose nontrivial solution is x * = E * =  [ ( x / 5 - 1 ) / 2 1 1 / 2 = 0 . 7 8 6 2  .... The 
fractal dimension of the SAWs that are included in E,, depends on the 
derivative m = dE'/dE[ E- = 3 x ' 2  + 5x .4 = 6 - ~/5 = 3.7639 .... At the fixed 
point (7~ 

In(m) 
Os , ,  = = 1.2065 (4.3) 

In(3) 

An exact expression for the average number  of monomers  <NE>,, in a 
SAW on the fractal nth generation is found by substituting the partition 
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function E,  into Eq. (3.2). At the fixed point E, ,=  E* = x *  this yields an 
iterative equation whose solution is exactly 17) 

( N E ) , ,  = m" = 3 "  o~. = LO~~ (4.4) 

Thus, the amplitude of the edge-to-edge SAWs on the M G  curve is exactly 
equal to 1, and there are no corrections to the pure power law. 

Looking at Fig. 2, it is obvious that any value of initial fugacity which 
is different from x* will be dominated by the E 5 or the E 3 terms in 
Eq. (4.1b), and will thus yield D .... =ln(5) / ln(3)  or Dmi ,=  1. Therefore, 
from now on we will analyze the fractal dimension at x*. 

4.2.  I G S A W s  on t h e  M G  C u r v e  

The grand-canonical ensemble, which is used to obtain the fractal 
dimension of the edge-to-edge SAW on the M G  curve, becomes unsuitable 
when one wants to analyze the properties of a SAW which does not end 
at an edge of a fractal generation. Therefore we define an I G S A W  ensemble 
which is a generalization of the grand-canonical ensemble; for a lattice of 
linear size L, the ensemble contains all the IGSAWs that start at the edge 
of a fractal generation and end inside its bulk or at its other edge. There- 
fore, all the IGSAWs that are included in this ensemble have an end-to-end 
distance which is smaller than or equal to L. Note that all of  these 
IGSAWs only visit the backbone of the structure, and not its dangling 
ends. Following this, the partition function l~(x)  for the IGSAWs on the 
first generation of the lattice is (see Fig. 3) 

I i ( x )  = x + 2x  2 + 2x 3 + x 4 + x 5 (4.5) 

We can iteratively write /,,+ ~(x) for any generation n +1  as a function of 
l , (x)  and E, (x)  (see Fig. 3) 

I , , + ~ ( x ) = I , , + 2 E , , I , , + 2 E ~ I , , +  E,I,3 + E,,I,,4 

/,,(x) 
= E,,(x--~) l , ( E , ( x ) )  (4.6) 

It should be noted that once we set E ,  to be equal to E*, I,, does not have 
a finite-value fixed point, and if we look for such a point we would only 

fi 7T P 
Fig. 3. IGSAWs of the n + 1 generation as a function of nth-generation IGSAWs on the MG 

c u r v e ,  



552 Shussman and Aharony 

find the nonphysical  solution I *  = 0  or I * =  oo. This is a direct conse- 
quence of our definition of the I G S A W  ensemble: it includes all the 
IGSAWs that end inside the bulk of the n th generation, and therefore In + 1 
contains all the IGSAWs that are included in L,, plus many  others. There-  
fore as n grows, / , ,  diverges. 

Applying Eq. (3.2) to I,,+l results in an iterative expression for the 
average of all IGSAWs in the n + 1 generation, 

x d [ I,,(x) ] 
( N ; ) , , +  1 - I . +  i(x~ dx LE,,(x) I,(E,,(x)) (4.7) 

and a straightforward calculation, using (3.2) and remembering that at the 
fixed point of the fugacity E, , (x*)=x* for every n, yields 

dE.(x) 
( N ; ) . +  l = (N , ) , ,  + ( ( N I ) ,  - 1) T (4.8) 

The iterative equation (4.8) can be 
dE,,(x)/dE,,_ 11.,-. and Eq. (4.3) yields 

dE. dE. dE,,_ l dEI 
. . . .  = m  n 

dx - dE,,_, dE,,_ 2 dx 

with rn = 3 ~ Substituting (4.9) into (4.8) yields 

( N , ) , , + ,  = (Nt ) , ,  + ( ( N , ) ,  - 1)rn" 

= ( N t ) , +  ~'. ( ( N , ) l - - 1 ) m ;  
i = l  

- m -  ( N + ) l  _ ( N / )  l 1 m n + l  + 
m - - 1  m - - 1  

solved as follows: Using m =  

(4.9) 

(4.10a) 

(4.10b) 

(4.10c) 

where (4.10b) was derived by substituting (4.10a) iteratively into itself. 
The right term of (4.10c) is a constant.  Since m > 1, the left term there 
immediately yields the fractal dimension of the I G S A W  on the M G  curve, 

Dsaw(IGSAW) = ln(m)/ln(3 ) = 1.2065... (4.11) 

i.e., the same value as in the case of edge-to-edge SAWs [Eq. (4.3)]. 
Using Eq. (4.7) for n = 0  at x*, we find ( N ; ) I  = 2.5033 .... Therefore, 

( N I )  n = 0.5439m" + 0.4561 = 0.5439L ~ + 0.4561 (4.12) 

where the right term in (4.12) is a constant  correction (and therefore of the 
order 1"=  L~ 
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We should emphasize that the fractal dimension of the I G S A W  found 
here is equal to that found by Rammal  et al. 17) In our notation, what 
they found was the dimension of all the SAWs included in the partition 
function E,,. 

The difference in amplitudes between (4.4) and (4.12) can be quali- 
tatively explained as follows: (4.4) is an average of only a part of the SAWs 
that are averaged in (4.12); all the SAWs averaged in (4.4) reach the edge 
of the n th generation and are therefore generally longer compared to the 
SAWs averaged in (4.12). This is the reason for the amplitude in (4.4) 
being larger than that in (4.12). 

4.3.  S A W s  on t h e  M G  C u r v e  

Let us now use the same procedure to determine the fractal dimension 
of the "normal"  SAWs. As we noted earlier, we first discuss those SAWs 
that do not enter the dangling ends and therefore travel only on the back- 
bone of the fractal. 

The ensemble is defined similarly to Section 4.2, and contains all the 
SAWs that start at the edge of a fractal generation and end inside its bulk 
or at its other edge. We introduce an auxiliary partition function C , ( x ) ,  

which includes all the terms arising from SAWs which are restricted to the 
nth generation but do not reach its edge. We also define the total partition 
function S(x ) ,  which includes all the terms of all the SAWs in the ensemble, 
hence S , , ( x ) =  C , ( x ) +  E , ( x ) ,  where E,,(x)  was defined earlier. The initial 
partition functions are (see Fig. 4) 

C~(x)  = x + 2x  z + 2x  3 + 2X 4 

S l ( x )  = x + 2x  z + 3X 3 d- 2X 4 + X 5 
(4.13) 

Fig. 4. SAWs of the n + 1 generation as a function of nth-generation SAWs on the backbone 
of the MG curve; see Eqs. (4.13) and (4.14). 
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lterative construction of the partition function S for the n + 1 generation 
yields (see Fig. 4) 

S,+l(x)= {S+2ES+3E2S+2E3S+E4S+2E4C},  (4.14a) 

_ S,,(x) S,(E,,(x))+ 2E4(x) C,,(x) (4.14b) 
E,,(x) 

where the index ,7 on the curly brackets in (4.14a) refers to each of the 
partition functions inside. 

We could now follow the same procedure which we used after 
Eq. (4.6}, to determine the fractal dimension of the SAWs, but there is 
one major  difference between (4.6) and (4.14b); the right term in (4.14b) 
prevents us from proceeding in the same way as in (4.7) [the terms do not 
cancel after taking the derivative and we cannot  reach an expression 
similar to (4.8)]. Therefore we have to use a different procedure, and we 
start by applying (3.2) to (4.14b) and write a recursion relation for the 
average length of the SAW, 

x [~S,, <Ns>,,+(/3S,,-IOE:)rn"] (4.15) <Ns>"+'-S~,+, . 

where ~ =  l + 2E,,+ 3E~,+ 2E3 + 3E,4,, /3=da/dE,, and m=dE'(x*)/dE. 
Remembering that at the fixed point E ,  = x* for all n, the three terms ~, 
/3, and m are all constants. We can now substitute into (4.15) a simplified 
version of (4.14a), 

S,,+ 1 = c~S,,- 2x .5 (4.14c) 

A straightforward calculation then yields 

2x . 5 \  +/3x*S,-  10x .5 m" 
<Ns>,,+,: i+7----) (4.16) 

~,,+ l /  

At the fixed point, ~ = 6.5440...; therefore, as n goes to infinity, S,, diverges 
geometricaly. We can express the value of S,, at the fixed point by sub- 
stituting (4.14c) into itself and obtaining 

2x'5"] 2x '5  (4.17) 
s , ,  = : ' s , - uS- _ l : + -;-S_ l 

Substituting (4.17) into (4.16) and omitting all the terms that tend to zero 
in the limit n ~ ~ then yields 

< Ns >,, +, = <Ns >,, +/3x* m, + l + corrections (4.18) 
0~t71 
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Substituting (4.18) iteratively into itself yields the leading-order expression 

/3x* m , , + ( 1  fix* ) (Ns)"~ct(m-1~ ~ ( m - ~  =0 .7065m"+c  (4.19) 

Although (4.19) implies the existence of a constant correction term c, the 
value of c there is meaningless because it was calculated to match the initial 
condition n = 0 instead of the asymptotic behavior at n --+ oo. The value of 
c can be calculated numerically by iterating (4.16) and comparing the 
results for every n to (4.19). After about n ~ 15 iterations (Ns),, stabilizes 
to the form (4.19), with c = -0.4056 .... 

A better approximation is found by noting that in the limit n--+ or, S, 
scales like S,,~ct". We now take a perturbation theory approach and 
substitute the first-order solution (4.18) into the exact recursion relation 
(4.16). Doing this and using (4.17) yields the second-order correction 

(Ns),,~O.7065m"-O.4056+O.7461(m) " 

= 0.7065L ~ - 0.4056 + 0.7461L -x (4.20) 

where x = in(~/m)/In(3) = 0.5034 .... 
Since m/~ < 1, the third term in (4.20) is irrelevant and the approxima- 

tion (4.19) is valid for large L. Higher corrections involve larger powers of 
(ml<x)". 

Comparing the average (4.19) of the SAWs to the average (4.12) of the 
IGSAWs shows an identity of the fractal dimension Dsaw = ln(m)/ln(3) and 
a difference in the amplitude. Moreover, the only relevant parameter which 
determines the fractal dimension in both cases is m = dE'/dEl.,.., which is 
connected through its definition only to the paths reaching the edge of a 
fractal generation. This result can be intuitively explained as follows: due 
to the singly connected bonds in the MG curve, a SAW is really non- 
indefinitely growing only from a certain point at which it makes a 
"mistake" and enters a blob from which it cannot get out. Until reaching 
this point the walk is practically indefinitely growing, and this explains the 
identity of the fractal dimensions. However, there is some difference in the 
average lengths of these two walks, and this is reflected in the amplitude, 
which (as expected) is larger for the SAWs. 

A similar procedure to that used in this section can be carried out for 
the SAWs that can enter the dangling ends. In order to proceed with the 
calculation for this case, straightforward modifications have to be intro- 
duced into the initial partition function (4.13) and into the recursion 
relation (4.14). The leading term of the final result for this case is 

(Ns),, = 0.7092m" + O{ 1"} 

= 0.7092L~ + O{L-~ (4.21) 
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The difference between the amplitudes of (4.20) and (4.21) arises only from 
the difference in fl for the two cases. This result shows only a minor dif- 
ference with respect to (4.20), and therefore implies that the dangling ends 
do not play a significant role in determining the average length of a SAW. 
The intuitive explanation for this is that adding the dangling ends creates 
a large number of new SAWs, some of which are shorter than the average 
SAW, and others which are longer. The calculation yields, however, that 
the average SAW changes only slightly due to the addition of the dangling 
ends. 

5. SAWs ON THE 3 -S IMPLEX (3S)  CURVE 

5.1. The Types of SAWs on the 3S Curve 

In view of the results of Section 4.2, it looks interesting to examine 
IGSAWs and SAWs on a fractal curve of a different type. We chose the 
3-simplex for its lack of singly connected bonds; this fact enables a SAW 
starting at the origin to be of arbitrary length (on the MG curve this kind 
of SAW has a bounded length). Therefore there might be a difference in the 
fractai dimensions between these two types of SAW. 

On the MG curve we examined the dependence of the SAW average 
length ( N )  on the lattice linear size L. In the case of the 3S curve we make 
a slight modification and examine the dependence of ( N )  on the SAW 
end-to-end distance R = b" in the grand-canonical ensemble (b = 2 in the 
3S). Using Fig. 5, we define all the SAWs to start at the origin O and end 
at B, which is the edge of the n th fractal generation. We now define the 
following partition functions: (a) E,  for all the SAWs that may visit A, but 
do not exit through A and therefore are restricted to the boundaries of the 
nth generation (Fig. 5a), (b) I ,  for all the SAWs that reach B and are 
indefinitely growing from there, irrespective of whether they exit through 
A or not (Fig. 5b), and (c) S, for all the SAWs that end at B, irrespective 
of being an IGSAW or not (Fig. 5c). This modification would have no 
meaning if it was made with respect to the MG curve; but due to the 
ability of a SAW on the 3S to exit at one generation and to return at a 
later stage, it is meaningful here. Another projection of this modification, 
which will be shown later, is that in contrast to the case of SAWs on the 
MG curve, both partition functions I ,  and S,, do have finite fixed-point 
values. 

We start by stating the results of ref. 7 concerning the fractal dimen- 
sion of the SAWs included in E,,. The initial partition function for the 
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zeroth generat ion includes both  possible ways to carry  out  an end- to-end 
SAW (Fig. 2b), 

E o = x  + x 2 (5.1a) 

and  the recursion relat ion for higher  generat ions is 

E,,+I = E ~ + E  3 (5.1b) 

Using the renormal iza t ion  group  no ta t ion  E - E ,  and E ' - E , , + , ,  (5.1) 
t ransforms into the expression E '  = E 2 +  E 3. The fixed poin t  E* satisfies 
the equat ion E ' =  E with the solut ion E*  = (~/5 - 1)/2 = 0.6180. The initial 
condi t ion  (5.1a) defines an equat ion for x*, x * + x * Z = E  *, with the 

[al 

[bl 

Icl 

O B 

0 

O B 

Fig. 5. Examples of SAWs on the 3-simplex. OAB is the nth generation: (a) The SAW does 
not exit through A. (b) The SAW exits through A, returns to B, and is indefinitely growing 
from B. (c) The SAW exits through A, returns to B, and is not indefinitely growing. 
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solution x * =  0.4317. Using Eq. (3.2), a straightforward calculation yields 
the average number of steps 

(NE) , ,  = ( N E ) o  m" (5.2a) 

where 

x* + 2x .2 
( N e ) ~  = E* 1.3015, dEP E* m=--d- ~ = 2 E *  + 3E*Z=2.3820.. .  (5.2b) 

The fractal dimension of these SAWs is Dsaw(E)=ln(m) / ln (2 )=  1.2522 .... 
somewhat higher than our M G  result. 

5.2. I G S A W s  on t h e  3S C u r v e  

We are now able to treat the average length of IGSAWs. The ensemble 
of all such n th-generation possible walks between O and B is bounded in the 
dashed area of Fig. 6 and therefore satisfies the partition function 

I,, = E,, + E 2,,E,_ i E , -  2 ' " El Eox  (5.3a) 

We can use the case of n = 1 as an example for Eq. (5.3). In this case, an 
I G S A W  starts from point O of Fig. 6 and ends at B. It can either take the 
short path from O to B (without exiting through A), or take a path passing 
through A and C. In the latter case, the SAW is forbidden to visit point D 
in order to remain indefinitely growing. Therefore the partition function for 
the IGSAWs of the first generation is 

Ii = E l  + E~Eo.x  (5.3b) 

Fig. 6. The dashed area indicates all possible IGSAWs starting at the origin O and ending 
at the edge B of the nth generation. The half-filled triangle indicates that the IGSAW is 
forbidden to visit point D. 
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where the left term satisfies the short path and the right term satisfies all 
the possible long paths. 

We can now self-consistently rewrite (5.3a) 

I,  +, = E,  + 1 + E,2 + i E,  E,, _ l "'" El Eo x 
2 

E,,+, ( I , , - E , )  (5.4) = E , + t  + ---~-,, 

and examine the partition function ( I - E ) .  This function includes all the 
terms arising from IGSAWs that leave the nth generation via A and return 
later on to B. Following (5.4), ( I - E )  obeys the recursion relation 

E ,]+ 
( / -  E),, (5.5) ( I - - E ) , , + l - -  E,, 

At the fixed point E,  = E* the prefactor becomes E * <  1, and thus I,, flows 
toward the fixed point I * =  E*. Applying the average calculation proce- 
dure (3.2) to (5.5) reduces to 

(N/_  E),,+ l = ( N , _  E) ,  + 2(NE) , ,+ ,  -- (NE),,  (5.6) 

Using (5.2) and then substituting (5.6) recursively into itself yields 

m 
- -  1) rn" + I (Nt-E)O-- (2m Z 1)-(--Ne)~ (NI-E)"-(NE)~ m - 1  _] 

= 3.5448m" + 0.0582 = 3.5448R ~ + 0.0582 (5.7) 

where ( NI _  g)o was calculated using the partition function obtained from 
(5.3a), ( I - E ) o = E 2 x .  

It is now possible to obtain the desired average (NI) , ,  using the 
weighted average formula 

I ( N t )  = ( I -  E ) ( N t _  E) + E ( N E )  (5.8) 

Using (5.2), (5.3), and (5.7), we find 

( N I ) ,  = 1.3015m" + 0.5986(E'm)" + o { ( g * 2 m )  ", (E*)"} 

= 1.3015R~ + 0.4599R-~ + O{R - 1"3884, R-19465}) (5.9) 

We now compare the average (5.9) of all the IGSAWs to the average (5.2) 
of the SAWs that are restricted to within the boundaries of the nth genera- 
tion. They both have the same leading term, including the length rescaling 
factor and the amplitude. This equality of the leading terms in both cases 
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can be explained by fact that asymptotically I * =  E*;  thus, the term which 
involves ( I - E )  in Eq. (5.8) and expresses the weight of the longer paths 
does not contribute to the average length in the first order. Thus the 
fractal dimensions for both ensembles are identical and equal to Dsaw(I)= 
Ds,w(E) = ln(m)/ln(2) = 1.2522 .... 

5.3. " N o r m a l "  S A W s  on the  3S Curve  

Consider now the case of SAWs on the 3S curve, which is presented 
in Fig. 7. A SAW with R = 2" steps end-to-end distance starts at the origin 
O and ends at B ( O A B  is the nth generation). The SAW can choose its way 
from O to B among  all the combinations presented in Fig. 7. Due to the 
infinite size of the lattice, the number  of such combinations is also infinite. 

Following this, the partition function for the SAWs is 

S . =  E .  + E~ + 3 2 3 2 2 E . E . + I  + E , , E . + I E . + 2  + . . .  

k = n  i = n  

(5.1o) 

where G denotes the contents of the brackets. 
Substituting the value of the fixed point E =  E* into (5.10), we see 

that the series converges for all n to S ,  = 1; therefore the function S,  has 
a fixed value S = S* = 1. By using Eq. (3.2) and substituting this value, we 
can express ( N s ) , ,  by 

0 B 

Fig. 7. SAWs from O to B on the 3-simplex. The SAW can choose one of the following 
combinations: {I}, {I, II, III}, {I, II, IV. V, III}, and so on (the lattice is infinite). OAB 
represents the nth generation. 
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dE.. dG 
( Ns), ,  = xG ~ + xE,, 

a x  

~ 1 7 6  
(5.11) 

Now we can substitute into (5.11) the fixed-point values for all n, E,, = E*, 
and S, = 1, and the chain derivative dEJdx = m j dEo/dx [m was defined in 
(5.2)]. The result involves two composed geometrical series, yielding 

(E* + E*3)<NE>o 
( N s ) , , -  1 - m E * "  

m " =  12.329m" = 12.329R ~176 (5.12) 

with no corrections. Comparing the averages of the IGSAWs and SAWs 
again shows an identity in the fractal dimensions but a great difference in 
the amplitude, which, as expected, is much larger for the SAWs. 

6. CORRECTIONS DUE TO FINITE-SIZE EFFECTS 

An ideal fractal contains an infinite number of generations. However, 
when one wants to establish theoretical predictions for experimental results 
(or for computer simulations) one must take into account the effects 
generated due to the finite size of the sample, whose length characteristics 
are bounded between the lattice parameter a and its linear size L. These 
finite-size effects are relevant in only one of the cases that were discussed 
earlier; this is the case of SAWs in the 3S. In all the other cases there is no 
influence of such effects, because the SAW is restricted to a small portion 
of the lattice (on the MG curve an n-generation SAW cannot exit the 
nth generation, and on the 3S an n-generation IGSAW cannot exit the 
(n + 1 )th generation). 

Consider N generations of the 3S lattice, with a linear size L =  2 N. 
A SAW with the end-to-end-distance of R = 2" travels on this lattice from 
the origin to the edge of the nth generation. The case of interest is for 
n,~ N; otherwise, the SAW is restricted to a portion of the lattice L ~ R. 

The calculation for this case is done by cutting the series G in (5.10) 
after the (N- -1  )th term and obtaining the finite-size partition function S,, N. 
The average " U ( N s ) ,  is then calculated using Eq. (3.2), 

U X dS, N, xE* dG (6.1) 
<Ns  >" = S,, N ~xx <UE>"+l-E*Zm-"+"- -~x  
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After a heavy but straightforward calculation similar to the one presented 
in Section 5, we find the derivative dG/dx, 

--~x -= x * ( m  - 1) ~ m ~ - ; 5 - - - ] -  m" E .2 - 1 J (6.2) 

Substituting (6.2) into (6.1) in the limit n ,~ N, we obtain the leading finite- 
size corrections terms 

NN ( 1 y '  
( s ) , , =  12 .329m"- l l . 725(mE, ' - )N\ -E-~ j  +O(m"E *2`v-'') 

(6.3) 

The correction terms in (6.3) contain a positive power of R, but their 
amplitude decays to zero in the limit R ,~ L. 

7. D I S C U S S I O N  A N D  C O N C L U S I O N S  

We established that the three types of SAW (edge-to-edge, IGSAW, 
and SAW) on the same fractal have the same fractal dimensions. Although 
the fractals that were examined were basically different from one another, 
the final expression for the SAW average length had the same exponent in 
all the cases, and the differences appeared in amplitudes and correction 
terms. 

We found the exact amplitudes for three types of SAWs (E, IGSAW, 
and SAW) on two fractals (Mandelbrot-Given curve and 3-simplex). We 
showed that there is a basic difference in the relations between the 
amplitudes in these two fractals: In the MG curve, the singly-connected 
bonds prevent the SAW from reentering a generation which it previously 
left; this causes the edge-to-edge SAWs to be the longest and the indefinitely- 
growing SAWs, which can end inside the bulk, to be the shortest. Therefore 
the relation between the amplitudes is A(E)>A(SAW)> A(IGSAW). In 
contrast, on the 3-simplex, a SAW can travel to infinity and then return 
to an ending point very close to its starting point. This causes the rela- 
tion between the amplitudes to be A ( S A W ) > A ( I G S A W ) = A ( E ) ,  where 
A(SAW) is significantly larger than the other two amplitudes. 

Our results show a major difference in the properties of IGSAWs on 
fractals with respect to regular lattices, as obtained in refs. 9 and 10. 
Following Vannimenus, 1~8~ we suggest that this can be an outcome of the 
topological constraint which is common for both of our fractals, that a 
SAW can only enter once an nth-generation iteration. This constraint does 
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not exist, however, on other fractals, such as the 3-dimensional Sierpinski 
gasket or the 3-dimensional 3-simplex. It will therefore be most interesting 
to carry out an analysis similar to the one presented here for these fractals. 

It is widely agreed that the MG curve represents an excellent model 
for the infinite percolation cluster a t  pc .  (31 Therefore, there is reason to 
expect that a polymer's fractal dimension in a dilute system at Pc is 
independent of the type of SAW. The difference between average lengths of 
different types of polymers on such a cluster appears only through the 
amplitudes and correction terms. It would be interesting to test these 
predictions on real percolation clusters. 
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